Energetic and conformational aspects of dendrimer overcharging by linear polyelectrolytes.

نویسندگان

  • Sergey V Lyulin
  • Anatolij A Darinskii
  • Alexey V Lyulin
چکیده

Extensive Brownian dynamics simulations of conformational changes accompanying the overcharging of a dendrimer by an oppositely charged long linear polyelectrolyte (LPE) have been carried out. The simulated results have been compared with the predictions of the Nguen and Shklovskii correlation theory [Physica A 293, 324 (2001)] for impenetrable charged spherical macroion. Dendrimer overcharging is caused by the spatial correlations between the "excess" of the LPE charges adsorbed onto its surface. The simulated LPE-length dependence of the corresponding "correlation" energy is in agreement with the theoretical predictions. Maximum of the LPE adsorption occurs at some critical LPE length N{ch};{c} , and the first order phase transition from completely coiled conformation to the conformation with released tails takes place. The phase transition is accompanied by the drastic increase in the relative fluctuations of the polyelectrolyte size. Upon increasing the linear-chain length above N{ch};{c} , the one-long-tail conformation becomes energetically preferable; the exchange time between the long-tail conformation and the short-tail conformation is very large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes.

We study the salt-dependent conformations of dilute flexible polyelectrolytes in solution via computer simulations. Low concentrations of multivalent salt induce the known conformational collapse of individual polyelectrolyte chains, but as the salt concentration is increased further this is followed by a reexpansion. We explicitly demonstrate that multivalent counterions can overcompensate the...

متن کامل

Complexes Comprised of Charged Dendrimers, Linear Polyelectrolytes, and Counterions: Insight through Coarse-Grained Molecular Dynamics Simulations

Given the exceptional potential of dendrimer macromolecules for numerous biomedical applications, we performed extensive coarse-grained molecular dynamics simulations to investigate the role of electrostatic interactions in complexes comprised of cationic dendrimers with oppositely charged linear polyelectrolytes. For this purpose, we varied the nature of polyelectrolytes by considering both mo...

متن کامل

Multiscale modeling of dendrimers and their interactions with bilayers and polyelectrolytes.

Recent advances in molecular dynamics simulation methodologies and computational power have allowed accurate predictions of dendrimer size, shape, and interactions with bilayers and polyelectrolytes with modest computational effort. Atomistic and coarse-grained (CG) models show strong interactions of cationic dendrimers with lipid bilayers. The CG simulations with explicit lipid and water captu...

متن کامل

Theory of polyelectrolytes in solutions and at surfaces

Polyelectrolytes are polymers carrying either positively or negatively charged ionizable groups. The properties of these polymers in solutions and at charged surfaces depend on the fraction of dissociated ionic groups, solvent quality for polymer backbone, solution dielectric constant, salt concentration, and polymer–substrate interactions. In this review, we summarize the current development o...

متن کامل

Density functional theory for planar electric double layers: closing the gap between simple and polyelectrolytes.

We report a nonlocal density functional theory (NLDFT) for polyelectrolyte solutions within the primitive model; i.e., the solvent is represented by a continuous dielectric medium, and the small ions and polyions by single and tangentially connected charged hard spheres, respectively. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for hard-sphere re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 78 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2008